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(57) ABSTRACT

A neuristor-based reservoir computing device includes sup-
port circuitry formed in a complimentary metal oxide semi-
conductor (CMOS) layer, input nodes connected to the sup-
port circuitry and output nodes connected to the support
circuitry. Thin film neuristor nodes are disposed over the
CMOS layer with a first portion of the neuristor nodes con-
nected to the input nodes and a second portion of the neuristor
nodes connected to the output nodes. Interconnections
between the neuristor nodes form a reservoir accepting input
signals from the input nodes and outputting signals on the
output nodes. A method for forming a neuristor-based reser-
voir computing device is also provided.

20 Claims, 5 Drawing Sheets
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600

Forming a structured silicon circuit with a
number of connection points

605

'

Forming a thin film circuit over the structured
silicon circuit

610

Forming neuristor nodes
615

Interconnecting the neuristor nodes, the
interconnections comprising a plurality of
feedback routes

620

:

Forming vias passing up from the connection
points on the silicon circuit to electrically
connect inputs from the silicon circuit to the thin
film circuit

625

'

Forming vias passing up from the connection
points on the silicon circuit to electrically connect
outputs from the thin film circuit to the structured

silicon circuit

630

Fig. 6
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NEURISTOR-BASED RESERVOIR
COMPUTING DEVICES

BACKGROUND

Reservoir computing describes a broad range of recurrent
neural networks, including liquid state machines and echo
state networks. Reservoir computing uses a collection of
recurrently connected units called a reservoir. Inputs are
accepted by the reservoir and mapped to a higher dimension.
The state of the reservoir can then be read to determine the
desired output. Reservoir computing offers the potential for
efficient parallel processing and nonlinear signal discrimina-
tion. For example, reservoir computing can be used to effi-
ciently solve a number of tasks that are deemed computation-
ally difficult, such as identifying features images, predicting
chaotic time series, and speech recognition.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate various examples of
the principles described herein and are a part of the specifi-
cation. The illustrated examples are merely examples and do
not limit the scope of the claims.

FIG. 1 is a diagram of neuristor-based reservoir, according
to one example of principles described herein.

FIG. 2 is diagram of the computational flow in a neuristor
based reservoir computer, according to one example of prin-
ciples described herein.

FIG. 3 is circuit diagram of a neuristor node, according to
one example of principles described herein.

FIG. 4 is a cross sectional diagram of a hardware imple-
mentation of a neuristor node within a neuristor-based reser-
voir computer, according to one example of principles
described herein.

FIG. 5 is a diagram of a small portion of a neuristor-based
reservoir computer, according to one example of principles
described herein.

FIG. 6 is a flowchart of a method for forming a neuristor-
based reservoir computing device, according to one example
of principles described herein.

Throughout the drawings, identical reference numbers
designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION

Neuristor-based reservoir computing offers the potential
for efficient parallel processing and nonlinear signal discrimi-
nation. For example, reservoir computing can be used to
efficiently solve a number of tasks that are deemed computa-
tionally hard, such as identifying features images, predicting
chaotic time series, modeling robotic movements based on
sensory inputs, hand writing recognition and speech recog-
nition.

Reservoir computing uses a collection of recurrently con-
nected units called a reservoir. In some implementations, the
units within the reservoir computer may be neuristors or
elements that exhibit neuron-like behavior. Biological neu-
rons use signal transduction that is mediated in large part by
sodium and potassium ion channels that dynamically permit
or prevent polarizing currents to charge or discharge through
the cell membrane. If a cell body is sufficiently polarized
though its dentritic inputs, the ion channels change conduc-
tance markedly and a voltage spike, or action potential, is
triggered that travels along the axon. This all-or-nothing spik-
ing is one of the fundamental principles of computation in
biology. Computationally simulating the use of neuristors in
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reservoir computing networks in software has been compu-
tationally expensive. No hardware constructions of a neuris-
tor-based reservoir computing device are known.

In one example, memristors can be used to form hardware
implementations of neuristors and reservoir computers
directly in hardware. A variety of memristor types could be
used. For example, Mott insulators, such as NbO,, exhibit
threshold switching that can be used to directly produce hard-
ware elements with the “all-or-nothing™ behavior of biologi-
cal neuristors. The mechanism for “all-or-nothing” switching
in Mott insulators is current-controlled negative differential
resistance. This phenomenon is caused by a reversible insu-
lator-to-metal phase transition that occurs when sufficient
current is driven through the device to locally heat some of the
material above its transition temperature. This induces a con-
ductive channel in the device that bridges the two electrodes.
Injecting sufficient energy into the device to heat the material
requires measurable time. Thus, these memristors exhibit
dynamic resistance that is dependent on excitation history.

This property of the Mott memristors allows them to serve
as electronic analogs of axon action potential and to form the
basis of a neuristor with threshold driven spiking, lossless
propagation at a constant velocity, uniform spike shape, and a
refractory period. From a technological standpoint, neuristors
based on Mott memristors have advantages of switching rap-
idly (less than about one nanosecond), exhibiting a low tran-
sition energy (less than about 100 femto joules), scale to at
least tens of nanometers, are compatible with conventional
front or back-end complementary metal-oxide-semiconduc-
tor (CMOS) materials and processes, and can be fabricated on
a wide range of substrates. These current controlled devices
do not have the limitations of voltage controlled negative
differential devices such as Esaki diodes. Esaki diodes
require inductors to operate, and consequently cannot be inte-
grated at the nanoscale.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present systems and methods.
It will be apparent, however, to one skilled in the art that the
present apparatus, systems and methods may be practiced
without these specific details. Reference in the specification
to “an example” or similar language means that a particular
feature, structure, or characteristic described in connection
with the example is included in at least that one example, but
not necessarily in other examples.

The term “parametrically random” refers to randomness
within certain constraints. For example, a connection
between a first node and a second node may be randomly
selected to be connected, but the trace that forms the inter-
connection between the first node and second node is con-
strained by the physical dimensions ofthe circuit of which the
first node and second node are a part. Other parameters that
may constrain the random nature of interconnections may be
layout design rules. These design rules may include specific
distances between conductive traces and that a trace may not
intersect itself. In some examples, the interconnections may
be further constrained by global parameters that define char-
acteristics of the population of interconnections. For
example, these global parameters may include defining an
average number of connections per node, maximum allow-
able interconnection distance, mean electrical resistance for
the interconnections, or other global parameter.

FIG. 1 is a diagram of a neuristor-based computing reser-
voir structure (100) that includes a number of inputs (102),
reservoir (106), and a number of outputs (110). The input
(102) includes a number of input nodes (104). In some
examples, these input nodes may be vias passing from an
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underlying complementary metal-oxide-semiconductor
(CMOS) layer upward into the overlying reservoir layer. The
connections between the input nodes and the reservoir may be
random, parametrically random, or structured. One input
node may connect to one or multiple neuristor nodes (108)
within the reservoir (106). Additionally, some input nodes
(104) may be connected directly to an output node, another
input node, or may not be connected to any other node.

Typically, the reservoir includes a large number of neuris-
tor nodes and interconnections. These neuristor nodes map
the input signals to a higher dimension. The parametrically
random nature of these interconnections produces a wide
range of computation effects that can be exploited to analyze
the inputs. Inside the reservoir (106), the neuristor nodes are
highly interconnected and form a variety of feedback connec-
tions that return a certain output to a node or nodes that
originally generated the output. This produces feedback loops
of'the reservoir “resonate” in response to a given input, set of
inputs, or time sequence of inputs. These resonances and
other computational effects of in the reservoir can be used to
analyze the inputs in a parallel, extremely fast, and computa-
tionally efficient manner.

The outputs (110) are used to determine the state of the
reservoir or portions of the reservoir, including resonances
within feedback loops in the reservoir. The connections
between the output nodes (112) and the reservoir may also be
parametrically random or structured. Output nodes may also
be connected to other outputs and directly to inputs. In some
implementations, the distinction between an input and output
is blurred, with the same node serving as an input node or an
output node depending on the circumstances.

FIG. 2 shows a specific implementation of a reservoir
computer (200) that includes structured logic/memory (116)
that is implemented in CMOS or other conventional circuitry
to provide inputs and support to the reservoir (106). In some
examples, the structured logic/memory provides interfaces to
computational processors, addressing to specific input nodes,
memory to store inputs or instructions, multiplexers/demul-
tiplexers, transistors to selectively activate input nodes, volt-
age supplies, and other functions. The reservoir (106) accepts
the inputs from the structured logic/memory (116). Output
structured logic/memory (118) reads the state of the reservoir
(106). Using the state of the reservoir, conclusions can be
drawn about the input signals.

As discussed above, there may be some blurring between
input and output nodes, with some nodes being used as both
input and output nodes. Similarly, the same logic/memory
may be used for both input and output. In one example, an
input signal is inserted into the reservoir by a first node and
then the result of the computation by the reservoir is sampled
using the same node.

Learning and adaptive computing can be accomplished in
a variety of ways. In one example, the characteristics of the
connections and/or neurons in the reservoir may be altered.
For example, memristors may be incorporated into the reser-
voir, either in the neuristor nodes or in the connections
between nodes. These memristors can be programmed to
remember specific stimuli and may adapt the function and
interconnection of the neuristor nodes to perform the desired
function or produce the desired output.

In other implementations, the logic/memory (116, 118)
may be reprogrammed to alter the location/combination of
inputs to produce the desired output. In these implementa-
tions the neuristor nodes and interconnections between the
neuristor nodes may have fixed characteristics and the archi-
tecture of the neuristor reservoir remains static over time. For
example, if a first node is connected to the second node by a
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trace with specific electrical resistance, the first node and
second node remain connected by that trace with its electrical
resistance throughout the lifetime of the device. However,
because the neuristor-based reservoir layer is connected to
CMOS circuitry, the inputs into the reservoir layer can be
altered to produce the desired output. For example, if a signal
representing spoken words is input into the reservoir com-
puter, specific feedback loops will resonate when specific
words or sounds are spoken. The output from those feedback
loops identifies when the feedback loops resonate. This
“computation” process is very efficient and very fast. The
neuristor-based reservoir computer can “learn” to output the
desired identification of spoken words by adjusting the inputs
over which the signals are input to the reservoir and/or asso-
ciating output by the reservoir with specific words or patterns.

FIG. 3 is a lumped circuit diagram of one neuristor node
(300) within a reservoir that uses two nominally identical
Mott memristors (M; and M,). In parallel with each of the
Mott memristors is a capacitor (C, and C,). The two channels
are energized (d.c.-biased) with opposite polarity voltages,
similar to the sodium and potassium channels of a biological
neuron. The channels are coupled to each other through a load
resistor (R ,). The circuit has an input resistance (R ;) and an
output impedance (R_,,and C_,,). This circuit is described by
four coupled first-order differential equations that define four
dynamic state variables for the system. These four state vari-
ables are: the normalized metallic channel radii (u,, u,) of the
memristors (M;, M,) and the charges (q;, q,) stored in the
capacitors (C,, C,). When a sub-threshold input voltage is
applied, the response of the neuristor is minimal. However,
when a super-threshold input is applied, the output of the
neuristor is substantially greater. For example, if the threshold
of the neuristor is about 0.25 volts, the application of a sub-
threshold input voltage of 0.2 V for 10 microseconds may
result in an output of tens of milli-volts. However, if the input
voltage is 0.3 volts the output of the neuristor may be a voltage
spike with a peak of greater than 0.3 volts. Thus, the mem-
ristor-based neuristor exhibits both signal gain and threshold-
ing. The charging/discharging of the capacitors control time
delay that mimics the refractory period of biological systems.
Interaction between the two memristors is mediated by resis-
tor R; ,. The system also produces constant spike amplitude/
shape and constant velocity propagation through multiple
neuristors connected in series. The amplitude and shape of the
output pulse is determined by the electrical characteristics of
the neuristor and the applied voltages (+V, . and -V, ). The
amplitude and shape of the output pulse is independent of the
input. The input functions solely to trigger firing by the neu-
ristor. The principles described above provide for a transistor-
free neuromophic architecture.

FIG. 4 shows a cross sectional diagram of a multilayer
circuit (400) that implements the lumped circuit shown in
FIG. 3. The multilayer circuit (400) is a small portion (node
300, FIG. 3) of a neuristor-based reservoir computer. In this
example, the neuristor-based reservoir computer (400)
includes two main sub-parts: the CMOS support circuitry
(404) and the reservoir (402). As discussed above, the CMOS
support circuitry (404) may provide a variety of functions and
elements such as transistors, voltage supplies, multiplexer/
demultiplexers, communication lines, addressing, communi-
cation interfaces, memory, processors, and other elements/
functions. The multilayer circuit (400) is formed over the
support circuitry (404) and connections are made to the
underlying support circuitry by disposing contacts (V,,, V,,,,)
over appropriate locations of the support circuitry.
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The reservoir (402) may be formed using thin film depo-
sition and patterning techniques over the CMOS layer. The
reservoir includes conductive layers (V,,,, V., V+, V-, Inter-
connect A, Interconnect B), negative differential resistance
(NDR) memory elements (M1, M2), resistors (R;,,R,,,), and
capacitive elements (C1,C2,and C,,,). The conductive layers
(V,» V.o V4, V=, Interconnect A, Interconnect B) may be
formed from a variety of conductive materials, including
metals, metal oxides, metallic nitrides, transparent conduc-
tive oxide, or other conductive material or combination of
materials. As non-limiting examples, the conductive layers
can be formed from titanium nitride, tantalum nitride, copper,
aluminum, or platinum. The NDR memristors (M1, M2) can
be formed from a variety of current-controlled negative dif-
ferential resistance materials. Non-limiting examples include
oxides of strontium, oxides of barium, oxides of transition
metals, or some combination thereof. The transition metal
can be at least one of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y,
Zr,Nb, Mo, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, W, Re, Os, Ir, Pt,
La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
Inanother non-limiting example, the current-controlled nega-
tive differential resistance material can be a chalcogenide
glass or may include organic material. These memristors are
also known as Mott memristors because of the metal-non-
metal Mott transition that results in large differences in con-
duction as a function of the applied voltage/current.

An insulating material surrounds and separates the various
elements. The insulating material can be an oxide of silicon,
an oxide of aluminum, an oxide of titanium, or some combi-
nation thereof. In an example, the insulating material can be
a dielectric material that is non-stoichiometric. For example,
the dielectric material can be SiO,, AlO, or TiO, that is
slightly off stoichiometry to form a memristive matrix with
mobile dopants. The conductive layers can be interspersed
with dielectric material using a lithographic process to form
isolated sections of conductive material.

The multilayer circuit (400) creates the neuristor node
(300) shown in the circuit diagram in FIG. 3. The biasing
voltage +V ;. is applied upper +V conductive element and the
biasing voltage -V, _ is applied to -V conductive element. In
this example, the input to the neuristor node at the lower left
V,, element. The resistance R;, is interposed between inter-
connect A and the input V,,,. Point 302 in FIG. 3 is formed by
interconnect A. The +V conductive element forms the point
315 in FIG. 3. Capacitor C1 and the Mott memristor M1 are
sandwiched between interconnect A and the +V conductive
element/layer. The capacitor C1 and Mott memristor M1
make up channel 1.

The lumped resistance R; , and interconnect B link channel
1 with channel 2. Channel 2 is formed by a second Mott
memristor M2 and a capacitor C2 that are sandwiched
between interconnect B and the negative voltage layer -V.
The output is formed by an output resistor R ,,, and an output
capacitor C, . The signal output of the neuristor node is at the
V... conductive layer and is available for transmission, stor-
age, or manipulation by the CMOS layer 404.

The NDR memristors (M,, M,) are biased by the applied
voltages such that they are close to their activation thresholds
but remain in the OFF state. When a voltage pulse is applied
to the input line, the current-driven insulator-metal transition
in the NDR material can be activated if the input exceeds a
threshold. This turns the Mott memristors (M, M,; FIG. 3) to
an ON state. The Mott memristors have a non-linear response
to the application of voltage pulses. When voltage pulses that
have a magnitude or duration that is less than a threshold are
applied, the Mott memristors do not respond. When voltage
pulses that exceed the threshold are applied, conductive path-
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ways are created between the one of the conductive layers and
the central layer and the Mott memristor turns on.

For example, an input pulse is applied to the input point
(301, FIG. 3). This pulse exceeds the threshold to switch
Channel 1 from the OFF state to the ON state. The application
of the input pulse allows conductive pathways to form in the
NDR layer and make an electrical connection between the
lower conductive layer (315, FIG. 3) and the second conduc-
tive portion (302, FIG. 3). This applies a negative electrical
voltage to point 302 in FIG. 3. This negative voltage biases
channel 2 so that it also switches from an OFF state to an ON
state. Specifically, the voltage difference between point 303
and point 310 is great enough to trigger the metal-insulator
transition in the Mott memristor M,. The switching of the
channels from their OFF to ON states is not immediate and is
moderated by the capacitors C1 and C2. The output point 304
receives the output signal generated by firing of the neuristor
node.

When an input is received that is below the threshold, a
minimal output voltage is generated. This minimal output
voltage is typically substantially lower than the input voltage
because the resistances (R; |, R;,, and R ) effectively block
the input voltage. As discussed above, when the input voltage
exceeds the threshold for switching the Mott memristor in
channel 1 to the ON state, this triggers the neuristor to fire.
Thus, the output signal first spikes in a negative direction
when the first Mott memristor M, switches ON and connects
+V ;. to the interconnect A. After a short delay (induced by
the charging of capacitor C, ) the output voltage swings nega-
tive when the first Mott memristor M, becomes conductive
and connects +V ;. to the point 302. This negative voltage is
pulls point 303 lower and induces switching of second Mott
resistor. After a short delay (during charging of capacitor C,)
the output swings positive when the second Mott memristor
M, becomes conductive and connects -V, . to the point 303.

After triggering, the Mott memristors return to their OFF
state and the firing of the neuristor is complete. The neuristor
as described above has many of similar characteristics to a
biological neuron, including “all-or-nothing” firing, signal
delay, and a refractory period.

The neuristor and neuristor based reservoir computer can
accept analog or digital input. For example, the neuristor may
accept digital data from a memory or a processor. Addition-
ally or alternatively, a neuristor may accept analog data
directly from a sensor. In some examples, the sensor may be
integrated into the same chip as the neuristor.

FIG. 5 is one example of a neuristor reservoir (500) that is
implemented according to the principles discussed above.
The inputs/outputs (504) are shown as open circles and neu-
ristor nodes (506) are shown as shaded circles. In this
example, the input/output (504) and neuristor nodes (506) are
shown as being regularly spaced and is a quasi-grid pattern.
The neuristor reservoir (500) grid pattern is subdivided into
repeated units (502). This regular layout may facilitate the
density and addressing of the underlying CMOS components.
However, interconnections between the various input, out-
puts, and neuristor nodes may be parametrically random,
which covers the range from totally random (where the
parameters are not constraining) to partially random (where
the parameters constrain at least a portion of the connections
or specific aspects of the connections). For purposes of illus-
tration only a small number of inputs, outputs, and neuristor
nodes are shown. Neuristor reservoirs would typically con-
tain large numbers of neuristor nodes. The neuristor reser-
voirs may be constructed in with any suitable layout, includ-
ing larger or smaller sub-units, sub-units that vary in size,
layouts that are not grid-like, or another layout that facilitates
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the desired interconnections. In general, the layout of the
neuristor reservoir is principally limited by the processes and
material that are used to form the neuristor reservoir. In some
examples, the neuristor reservoir may take the form of a
crossbar array having at least one crossbar layer. In some
examples there may be little distinction between input/output
nodes. For example, the intermediate nodes (508) in FIG. 5
may be used as input or output nodes, or may be both input
and output nodes simultaneously.

In general, the neuristor nodes are highly interconnected
and form a number of feedback loops that can resonate in
response to specific input signals or time sequences. For
example, a neuristor node (512) is directly connected to three
input/output nodes and approximately thirteen neuristor
nodes. One simple resonant feedback loop is formed by neu-
ristor nodes (514) and (516). The following description
assumes that the inputs to the neuristors are on the left and
outputs are on the right. However, in some designs this des-
ignation is arbitrary. As can be seen from the cross section in
FIG. 4, this example of a neuristor node would operate based
on an input from either the right hand or left hand vias.
Returning to FIG. 5 and using the input/output designation
described above, node (514) receives an input from one of two
input points and responds with an output (if the input exceeds
the switching threshold). The output of node (514) is routed to
the input of node (516), which outputs a signal that is directed
to three other neuristor nodes, including node (514). If con-
ditions are right (i.e. the input from node (516) is received by
the node (514) when it is not in its refractory period), the
signal continues to resonant between nodes (514) and (516)
until it dissipates or is disrupted by another input (i.e. a second
input signal is received by node (514) so that the resonating
signal from node (516) is received during the refractory
period).

The nodes (514) and (516) also participate in a second
resonant feedback loop that includes nodes (518) and (520).
The signals in this feedback loop will resonate more slowly
than then previously discussed loop because of the greater
delay introduced by the greater number of nodes.

As discussed above, the characteristics of the neuristor
nodes and interconnections in the reservoir may be fixed or
variable. In a fixed configuration, the reservoir remains static
and the signals associated with the inputs/outputs are altered
to produce the desired computation within the reservoir. In
other implementations, the characteristics of the interconnec-
tions may be variable. For example, the interconnections may
include a variable resistor (such as a nonvolatile memristor)
or a fuse. The electrical resistance of the connection can then
be altered by changing the resistance of the connection to
decrease the weight of the inputs received over this connec-
tion. If the connection includes a fuse, the fuse can be blown
to eliminate that particular connection. In FIG. 4, the dielec-
tric elements (440) may be memristors that have a program-
mable resistance that is stable over predetermined time and
voltage ranges.

FIG. 6 is a flowchart of a method for forming a neuristor-
based reservoir computing device that includes forming a
structured silicon circuit with a number of connection points
(block 605) and forming a thin film circuit over the structured
silicon circuit (block 610). The thin film circuit is formed by
forming neuristor nodes (block 615) and interconnecting the
neuristor nodes, the interconnections forming a plurality of
feedback routes between the neuristor nodes (block 620). The
neuristors may include negative differential memristor ele-
ments that are current controlled. In some examples, the
neuristors may be designed to have the same performance
subject to manufacturing variations. In other examples, the
neuristors may be designed to have varying performance. For
example, the resistance or capacitance values within a neu-
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ristor may be intentionally varied to produce the desired
variation in delay and threshold characteristics.

The interconnections may be parametrically random con-
nections between the neuristor nodes. Parameters applied to
the connections may include a maximum path length, an
average number of connections between nodes, and an aver-
age number of nodes along any given path to connect an input
to an output. The electrical resistance of the various connec-
tions may also be parametrically random. The parameters that
influence the electrical resistance of the connections may
include the length of the trace, the thickness of the trace, the
width of the trace, the material that makes up the trace, and the
resistance of any resistive elements in the trace. In some
examples, the thickness of the trace may be fixed and the
nominal width of the trace defined, but the length of the trace
may vary. If resistive elements are included in the intercon-
nections, the electrical resistance of the resistive elements
may be random, programmable or fixed. For example, pro-
grammable resistive elements may be memristors.

The thin film circuit may include a number of domains and
sub-domains. In one example, the interconnections within a
sub-domain are random while the arrangement of the various
sub-domains is structured.

Vias are formed that pass upward from the connection
points onthe silicon circuit to electrically connect inputs from
the silicon circuit to the thin film circuit (block 625). Vias are
also formed that pass up from connection points on the silicon
circuit to electrically connect output from the thin film circuit
to the structured silicon circuit (block 630).

This results in a neuristor-based reservoir computing
device that includes silicon based (CMOS) support circuitry
layer, input and output nodes connected to the support cir-
cuitry, thin film neuristor nodes disposed over the CMOS
layer and interconnections between the neuristor nodes to
form a reservoir accepting input signals from the input nodes
and outputting signals to on the output nodes.

Learning by the neuristor-based reservoir computing
device may include altering, with the structured silicon cir-
cuit, the use of the inputs to the thin film circuit to achieve the
desired output from the thin film circuit.

The principles and methods described above can be applied
to form and use neuristor-based computing devices. The neu-
ristors are directly matched to the requirements of reservoir
computing including signal delay, high degrees of parallel-
ization and nonlinear signal discrimination. The reservoir
includes a large number of highly interconnected neuristors
implemented in a thin film circuit. The interconnections
between these nodes may be parametrically random and have
varying weights. The interconnections created a high degree
of feedback within the reservoir. The neuristor-based com-
puting devices can be used for a variety of computing tasks
including parallel processing and nonlinear signal discrimi-
nation.

The preceding description has been presented only to illus-
trate and describe examples of the principles described. This
description is not intended to be exhaustive or to limit these
principles to any precise form disclosed. Many modifications
and variations are possible in light of the above teaching.

What is claimed is:
1. A neuristor-based reservoir computing device compris-
ing:

support circuitry formed in a complementary metal oxide
semiconductor (CMOS) layer;

input nodes connected to the support circuitry;

output nodes connected to the support circuitry;

thin film neuristor nodes disposed over the CMOS layer, a
first portion of the neuristor nodes connected to the input
nodes and a second portion of the neuristor nodes con-
nected to the output nodes; and
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interconnections between the neuristor nodes to form a
reservoir accepting input signals from the input nodes
and outputting signals on the output nodes.

2. The computing device of claim 1, in which the intercon-
nections between the neuristor nodes are parametrically ran-
dom.

3. The computing device of claim 1, in which the intercon-
nections between the neuristor nodes have parametrically
random electrical resistances.

4. The computing device of claim 1, in which the neuristor
nodes comprise negative differential resistance elements.

5. The computing device of claim 4, in which the neuristor
nodes comprise current-controlled negative differential resis-
tance materials.

6. The computing device of claim 1, further comprising a
memristor interposed between a neuristor node and an inter-
connection, the electrical resistance of the memristor deter-
mining a degree of activation/inhibition in a connection
between the neuristor-based element and interconnection.

7. The computing device of claim 1, in which neuristor
nodes in the reservoir computer are divided into structured
sub-domains, in which connections between the neuristor
nodes in a sub-domain are parametrically random.

8. The computing device of claim 1, in which the neuristor
nodes each have the same design performance.

9. A neuristor-based reservoir computing device compris-
ing:

support circuitry formed in a complementary metal oxide
semiconductor (CMOS) layer;

input nodes connected to the support circuitry;

output nodes connected to the support circuitry;

thin film neuristor nodes disposed over the CMOS layer, a
first portion of the neuristor nodes connected to the input
nodes and a second portion of the neuristor nodes con-
nected to the output nodes; and

interconnections between the neuristor nodes to form a
reservoir accepting input signals from the input nodes
and outputting signals on the output nodes;

in which the neuristor nodes each comprise a first channel
comprising:

interconnect layer to receive an input signal;

an upper conductor to receive a biasing voltage;

a negative differential resistance (NDR) memristor; and

a capacitor, in which the memristor and the capacitor are
sandwiched between the interconnect layer and upper
conductor.

10. The computing device of claim 9, in which the NDR
memristor and capacitor are electrically parallel, in which
charging ofthe capacitor induces delay inthe NDR memristor
switching behavior.

11. The computing device of claim 10, in which an input
signal from an input node is received by the interconnect
layer, such that when a voltage difference between the input
signal and a bias voltage applied to the upper conductor
exceeds a threshold, the NDR memristor becomes conductive
and generates an intermediate output signal.

12. The computing device of claim 11, further comprising
a second channel comprising:

a second interconnect layer;

a second upper conductor receiving a biasing voltage;

a second NDR memristor;

a capacitor, in which the second NDR memristor and the

capacitor are sandwiched between the second intercon-
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nect layer and second upper conductor, in which the
second interconnect layer receives the intermediate out-
put signal.

13. The computing device of claim 9, in which the neuristor
nodes comprise Mott memristors.

14. A neuristor-based reservoir computing device compris-
ing:

support circuitry formed in a complementary metal oxide

semiconductor (CMOS) layer;

input vias passing upward from the support circuitry;

output vias passing upward from the support circuitry;

thin film neuristor nodes disposed over the CMOS layer, a

first portion of the neuristor nodes connected to the input

vias and a second portion of the neuristor nodes con-

nected to the output vias, in which the neuristor nodes

comprise:

interconnect layer receiving an input signal;

an upper conductor receiving a biasing voltage;

anegative differential resistance (NDR) memristor; and

a capacitor, in which the memristor and the capacitor are
sandwiched between the interconnect layer and upper
conductor; and

parametrically random interconnections between the neu-

ristor nodes to form a reservoir accepting input signals
from the input nodes and outputting signals on the out-
put nodes.

15. A method for forming a neuristor-based reservoir com-
puting device, the method comprising:

forming a structured silicon circuit with a number of con-

nection points;

forming a thin film circuit over the structured silicon circuit

by:
forming neuristor nodes; and
interconnecting the neuristor nodes, the interconnec-
tions comprising a plurality of feedback routes;
forming vias passing up from the connection points on the
silicon circuit to electrically connect inputs from the
silicon circuit to the thin film circuit; and
forming vias passing up from the connection points on the
silicon circuit to electrically connect outputs from the
thin film circuit to the structured silicon circuit.

16. The method of claim 15, in which learning by the
neuristor-based reservoir circuit comprises altering, with the
structured silicon circuit, the inputs to the thin film circuit to
achieve the desired output from the thin film circuit.

17. The method of claim 15, further comprising designing
parametrically random interconnections between the neuris-
tor nodes within parametric parameters.

18. The method of claim 17, in which the parametrically
random interconnections between the neuristor nodes com-
prise random connections is at least one sub-domain of the
thin film resistor.

19. The method of claim 17, in which the neuristors are
divided into sub-domains, in which interconnections with in
the sub-domains are subject to different parametric param-
eters than interconnections between the sub-domains.

20. The method of claim 15, in which interconnecting the
neuristor nodes comprises building resistance elements with
parametrically random electrical resistances into the inter-
connections.



